Fitting Linear Models - A. McIntosh 2012-12-06

The increasing power and decreasing price of small computers, especially "personal" computers, has made them increasingly popular in statistical analysis. The day may not be too far off when every statistician has on his or her desktop computing power on a par with the large mainframe computers of 15 or 20 years ago. These same factors make it relatively easy to acquire and manipulate large quantities of data, and statisticians can expect a corresponding increase in the size of the datasets that they must analyze. Unfortunately, because of constraints imposed by architecture, size or price, these small computers do not possess the main memory of their large cousins. Thus, there is a growing need for algorithms that are sufficiently economical of space to permit statistical analysis on small computers. One area of analysis where there is a need for algorithms that are economical of space is in the fitting of linear models.
The Conjugate Gradient Method and Its Application to Aerospace Vehicle Guidance and Control. Part I. Basic Results in the Conjugate Gradient Method - Cornelius T. Leondes 1970

The effectiveness of the CG Conjugate Gradient method for the solution of the optimal aerospace vehicle guidance and control problem is demonstrated. The superiority of the convergence rate of the CG method over the steepest descent method is demonstrated. The search of golden section technique is also discussed and shown to be a very powerful technique for one dimensional optimization. As one dimensional search cannot be carried out exactly accumulation of errors due to this source can produce directions of search which increase rather than decrease the objective functional. In this case it is found useful to go back to the local gradient direction and start the process over again. A number of new basic theorems and algorithmic techniques fundamental to the CG method are presented here and the establishment of a monotonic decreasing sequence for the cost functional which results in the determination of the optimal control is shown. A companion paper applies the basic results developed in this paper to the Mars entry guidance and control problem. (Author).

Nonlinear Conjugate Gradient Methods for Unconstrained Optimization - Neculai Andrei 2020-06-23
Two approaches are known for solving large-scale unconstrained optimization problems—the limited-memory quasi-Newton method (truncated Newton method) and the conjugate gradient method. This is the first book to detail conjugate gradient methods, showing their properties and convergence characteristics as well as their performance in solving large-scale unconstrained optimization problems and applications. Comparisons to the limited-memory and truncated Newton methods are also discussed. Topics studied in detail include: linear conjugate gradient methods, standard conjugate gradient methods, acceleration of conjugate gradient methods, hybrid, modifications of the standard scheme, memoryless BFGS preconditioned, and three-term. Other conjugate gradient methods with clustering the eigenvalues or with the minimization of the condition number of the iteration matrix, are also treated. For each method, the convergence analysis, the computational performances and the comparisons versus other conjugate gradient methods are given. The theory behind the conjugate gradient algorithms presented as a methodology is developed with a clear, rigorous, and friendly exposition; the reader will gain an understanding of their properties and their convergence and will learn to develop and prove the convergence of his/her own methods. Numerous numerical studies are supplied with comparisons and comments on the behavior of conjugate gradient algorithms for solving a collection of 800 unconstrained optimization problems of different structures and complexities with the number of variables in the range [1000,10000]. The book is addressed to all those interested in developing and using new advanced techniques for
solving unconstrained optimization complex problems. Mathematical programming researchers, theoreticians and practitioners in operations research, practitioners in engineering and industry researchers, as well as graduate students in mathematics, Ph.D. and master students in mathematical programming, will find plenty of information and practical applications for solving large-scale unconstrained optimization problems and applications by conjugate gradient methods.

Preconditioning and the Conjugate Gradient Method in the Context of Solving PDEs-Josef Malek 2014-12-22

Preconditioning and the Conjugate Gradient Method in the Context of Solving PDEs is about the interplay between modeling, analysis, discretization, matrix computation, and model reduction. The authors link PDE analysis, functional analysis, and calculus of variations with matrix iterative computation using Krylov subspace methods and address the challenges that arise during formulation of the mathematical model through to efficient numerical solution of the algebraic problem. The book’s central concept, preconditioning of the conjugate gradient method, is traditionally developed algebraically using the preconditioned finite-dimensional algebraic system. In this text, however, preconditioning is connected to the PDE analysis, and the infinite-dimensional formulation of the conjugate gradient method and its discretization and preconditioning are linked together. This text challenges commonly held views, addresses widespread misunderstandings, and formulates thought-provoking open
questions for further research.

STUDY OF THE CONJUGATE GRADIENT METHOD AND ITS APPLICATION TO THE CONSTRAINED MINIMIZATION PROBLEMS. - KAZUHIKO KAWAMURA 1972

Conjugate Gradient Method and Its Applications - Makoto Natori 1986

Application of a Conjugate Gradient Method to the Synthesis of Phase-Only Planar Arrays - 1991 The problem of minimizing the peak sidelobe level of a planar array of dipoles using phase-only synthesis is investigated. A hybrid nonlinear function minimization scheme is developed using a Taylor series approximation and a conjugate gradient algorithm. A weighted average peak sidelobe level function is introduced to yield a more stable numerical procedure. The peak sidelobe level is found to decrease in proportion to the logarithm of the aperture behavior.

Application of the Conjugate-gradient Method to Ground-water Models - T. A. Manteuffel 1983

Conjugate Gradient Type Methods for Ill-Posed Problems - Martin Hanke 2017-11-22 The conjugate gradient
Application of the Conjugate Gradient Method to the COMMIX-1B Three Dimensional Momentum Equation

John Barry King 1987

The conjugate gradient method is an efficient means of solving large sparse symmetric positive
definite systems of linear equations which arise from finite difference approximations to self-adjoint elliptic partial differential equations. In obtaining a solution, the conjugate gradient method successively minimizes a certain norm of the error in different orthogonal directions, causing an exact solution to be obtained in less than \(N \) steps for an \(N \times N \) system of equations. Because the conjugate gradient method is not widely known, it is seldom used in engineering applications in comparison to the successive over-relaxation (S.O.R.) method. Although comparisons between the conjugate gradient and S.O.R. methods have been made, these comparisons usually focus on the solution of a single system of equations often arising from one or two dimensional problems. For this reason the purpose of this research was to compare the performance of these methods in the context of the C0MMIX-1B three dimensional thermal hydraulics code where these methods are required to solve many different systems of equations in a given problem to the same level of convergence. To accomplish its purpose, this thesis has three main objectives. The first is to give the reader sufficient background to understand the conjugate gradient method used in COMMIX-IB. The second is to show how the conjugate gradient method fits into the overall solution strategy of COMMIX-IB. The last is to compare the running times of the conjugate gradient and S.O.R. methods for general problems run with COMMIX-IB, and to discuss several factors affecting this comparison. It is concluded that under many circumstances, the conjugate gradient method is more efficient than S.O.R.
Applications of the Conjugate Gradient Method to Finite Element Problems - George T. Spetar 1977

Computational Methods for Electromagnetic Inverse Scattering - Xudong Chen 2018-07-18 A comprehensive and updated overview of the theory, algorithms and applications of electromagnetic inverse scattering problems. Offers the recent and most important advances in inverse scattering grounded in fundamental theory, algorithms and practical engineering applications. Covers the latest, most relevant inverse scattering techniques like signal subspace methods, time reversal, linear sampling, qualitative methods, compressive sensing, and noniterative methods. Emphasizes theory, mathematical derivation and physical insights of various inverse scattering problems. Written by a leading expert in the field.

from a conjugate gradient algorithm perspective as well as methods of shortest residuals, which have been developed by the author.

Implementation of Preconditioned S-step Conjugate Gradient Methods on a Multiprocessor System with Memory Hierarchy - A. T. Chronopoulos 1987

Conjugate Gradient Method and Its Applications - M. Natori 1986

Implementation of the Preconditioned Conjugate Gradient Method - Thomas Peter Sandowich 1988

Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods - Masao Fukushima 2013-04-17 The concept of "reformulation" has long been playing an important role in mathematical programming. A classical example is the penalization technique in constrained optimization that transforms the constraints into the objective function via a penalty function thereby reformulating a constrained problem as an equivalent or approximately equivalent unconstrained problem. More recent trends consist of the reformulation of various mathematical programming problems, including variational inequalities and complementarity problems, into equivalent systems of possibly nonsmooth, piecewise smooth or
semismooth nonlinear equations, or equivalent unconstrained optimization problems that are usually differentiable, but in general not twice differentiable. Because of the recent advent of various tools in nonsmooth analysis, the reformulation approach has become increasingly profound and diversified. In view of growing interests in this active field, we planned to organize a cluster of sessions entitled "Reformulation - Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods" in the 16th International Symposium on Mathematical Programming (ismp97) held at Lausanne EPFL, Switzerland on August 24-29, 1997. Responding to our invitation, thirty-eight people agreed to give a talk within the cluster, which enabled us to organize thirteen sessions in total. We think that it was one of the largest and most exciting clusters in the symposium. Thanks to the earnest support by the speakers and the chairpersons, the sessions attracted much attention of the participants and were filled with great enthusiasm of the audience.

Numerical Models for Differential Problems - Alfio Quarteroni 2014-04-25 In this text, we introduce the basic concepts for the numerical modelling of partial differential equations. We consider the classical elliptic, parabolic and hyperbolic linear equations, but also the diffusion, transport, and Navier-Stokes equations, as well as equations representing conservation laws, saddle-point problems and optimal control problems. Furthermore, we provide numerous physical examples which underline such equations. We then analyze numerical solution methods
based on finite elements, finite differences, finite volumes, spectral methods and domain decomposition methods, and reduced basis methods. In particular, we discuss the algorithmic and computer implementation aspects and provide a number of easy-to-use programs. The text does not require any previous advanced mathematical knowledge of partial differential equations: the absolutely essential concepts are reported in a preliminary chapter. It is therefore suitable for students of bachelor and master courses in scientific disciplines, and recommendable to those researchers in the academic and extra-academic domain who want to approach this interesting branch of applied mathematics.

Implementation of the Conjugate Gradient Method Using Short Multiple Recursions-Teri L. Barth 1996

Application of the Euler-Lagrange-Method for solving optimal control problems-Olaosebikan Temitayo Emmanuel 2019-11-13 Doctoral Thesis / Dissertation from the year 2019 in the subject Mathematics - Applied Mathematics, grade: 96.50, , course: Mathematics, language: English, abstract: In this research, Euler-Lagrange Method approach, for solving optimal control problems of both one dimensional and generalized form was considered. In years past, calculus of variation, has been used to solve functional optimization problems. However, with some special features in Calculus of Variation technique, making it unique in solving functional
unconstrained optimization problems, these features will be advantageous to solving optimal control problems if it can be amended and modified in one way or the other. This call for the Euler-Lagrange Method which is a modification of the Calculus of Variation Method for solving optimal control problems. It is desired that, with the construction of the new algorithm, it will circumvent the difficulties undergone in constructing control operators which are embedded in Conjugate Gradient Method (CGM) for solving optimal control problems. Its application on some test problems have shown improvement in the results compared with existing results of solving this class of problems. The objective function values for problems 3, 4, 6, 7, 8, 9 and 10 which are: 1.359141, -5.000, 0.36950416, 0.51699120, 0.27576806, 1.5934159×[10]^(-2) and -3.880763×[10]^(-2) appreciate to the existing results 1.359141, -5.000, 0.4146562, 0.613969, 0.2739811, 1.5935×[10]^(-3) and -3.9992×[10]^(-2) respectively while the objective function values for problems 1, 2 and 5 do not fully appreciate to the existing results with slight differences. These results is an indication that the method has some advantages over some existing computational techniques built to take care of the said problems.

Nonlinear Optimization Applications Using the GAMS Technology - Neculai Andrei 2013-06-22 Here is a collection of nonlinear optimization applications from the real world, expressed in the General Algebraic Modeling System (GAMS). The concepts are presented so that the reader can quickly modify and update them to represent real-world
situations.

Conjugate Gradient Algorithms and Finite Element Methods - Michal Krizek 2012-12-06 The position taken in this collection of pedagogically written essays is that conjugate gradient algorithms and finite element methods complement each other extremely well. Via their combinations practitioners have been able to solve complicated, direct and inverse, multidimensional problems modeled by ordinary or partial differential equations and inequalities, not necessarily linear, optimal control and optimal design being part of these problems. The aim of this book is to present both methods in the context of complicated problems modeled by linear and nonlinear partial differential equations, to provide an in-depth discussion on their implementation aspects. The authors show that conjugate gradient methods and finite element methods apply to the solution of real-life problems. They address graduate students as well as experts in scientific computing.

The Conjugate Gradient Method for Linear and Nonlinear Operator Equations - James W. Daniel 1965

Conjugate Gradient Methods with an Application to V/stol Flight-path Optimization - R. K. Mehra 1967 Conjugate gradient methods have recently been applied to some simple optimization problems and have been shown to
converge faster than the methods of steepest descent. The present paper considers application of these methods to more complicated problems involving terminal as well as in-flight constraints. A number of methods are suggested to handle these constraints and the numerical difficulties associated with each method are discussed. The problem of flight-path optimization of a V/STOL aircraft was considered and minimum time paths for the climb phase were obtained using the conjugate gradient algorithm. In conclusion, some remarks are made about the relative efficiency of the different optimization schemes presently available for the solution of optimal control problems. (Author).

An Implementation of the Modified Generalized Conjugate Gradient Method-Zbigniew Leyk 1993

The Conjugate Gradient Method and Its Application to Aerospace Vehicle Guidance and Control. Part II: Mars Entry Guidance and Control-Cornelius T. Leondes 1970
The conjugate gradient method is shown to be an effective method for the guidance and control of aerospace vehicles. Mars reentry is considered as an example. As the entry angle and entry velocity are not known exactly beforehand and as there is a difference between the density of the Martian atmosphere and the assumed density profile during aerodynamic braking, and adaptive lambda matrix control element must be utilized. It is noted that the nominal trajectory on which the adaptive scheme is based does not need to be optimum in any sense. It can be any trajectory that satisfies desired boundary conditions. (Author).

Preconditioned Conjugate Gradient Methods - Owe Axelsson 1990-12-12

Riemannian Optimization and Its Applications - Hiroyuki Sato 2021-02-17 This brief describes the basics of Riemannian optimization—optimization on Riemannian manifolds—introduces algorithms for Riemannian optimization problems, discusses the theoretical properties of these algorithms, and suggests possible applications of Riemannian optimization to problems in other fields. To provide the reader with a smooth introduction to Riemannian optimization, brief reviews of mathematical optimization in Euclidean spaces and Riemannian geometry
are included. Riemannian optimization is then introduced by merging these concepts. In particular, the Euclidean and Riemannian conjugate gradient methods are discussed in detail. A brief review of recent developments in Riemannian optimization is also provided. Riemannian optimization methods are applicable to many problems in various fields. This brief discusses some important applications including the eigenvalue and singular value decompositions in numerical linear algebra, optimal model reduction in control engineering, and canonical correlation analysis in statistics.

Recent Advances in Numerical Methods and Applications II-Oleg P Iliev 1999-07-05 This volume contains the proceedings of the 4th International Conference on Numerical Methods and Applications. The major topics covered include: general finite difference, finite volume, finite element and boundary element methods, general numerical linear algebra and parallel computations, numerical methods for nonlinear problems and multiscale methods, multigrid and domain decomposition methods, CFD computations, mathematical modeling in structural mechanics, and environmental and engineering applications. The volume reflects the current research trends in the specified areas of numerical methods and their applications.

Contents: Computational Issues in Large Scale Eigenvalue ProblemsCombustion Modeling in Industrial FurnacesMonte Carlo MethodsMultilevel Methods for Incompressible Viscous FlowsApproximation of Nonlinear and Functional PDEsSolving Linear Systems with Error ControlRegular Numerical Methods for Inverse and Ill-Posed

M-step Preconditioned Conjugate Gradient Methods-Loyce Adams 1983

Applications of Conjugate-gradient Methods to the Minimum-energy Control of Electric Vehicles-S. A. Mousavi-Khalkhali 1983
Conjugate Direction Methods in Optimization - M.R. Hestenes 2012-12-06

Shortly after the end of World War II, high-speed digital computing machines were being developed. It was clear that the mathematical aspects of computation needed to be reexamined in order to make efficient use of high-speed digital computers for mathematical computations. Accordingly, under the leadership of Min a Rees, John Curtiss, and others, an Institute for Numerical Analysis was set up at the University of California at Los Angeles under the sponsorship of the National Bureau of Standards. A similar institute was formed at the National Bureau of Standards in Washington, D.C. In 1949 J. Barkeley Rosser became Director of the group at UCLA for a period of two years. During this period we organized a seminar on the study of solutions of simultaneous linear equations and on the determination of eigen values. G. Forsythe, W. Karush, C. Lanczos, T. Motzkin, L. J. Paige, and others attended this seminar. We discovered, for example, that even Gaussian elimination was not well understood from a machine point of view and that no effective machine oriented elimination algorithm had been developed. During this period Lanczos developed his three-term relationship and I had the good fortune of suggesting the method of conjugate gradients. We discovered afterward that the basic ideas underlying the two procedures are essentially the same. The concept of conjugacy was not new to me. In a joint paper with G. D.

Preconditioned Conjugate-Gradient 2 (PCG2), a Computer Program for Solving Ground-water Flow
Equations - Mary Catherine Hill 1990
Related with Application Of Conjugate Gradient Method To Electromagnetics Signal Analysis:

The Bad Samaritan

The Anatomy Of Architecture: Ontology And Metaphor In Batammaliba Architectural Expression

The Beginning Of Infinity By David Deutsch
Application Of Conjugate Gradient Method To Electromagnetics Signal Analysis

Thank you definitely much for downloading application of conjugate gradient method to electromagnetics signal analysis. Most likely you have knowledge that, people have see numerous period for their favorite books with this application of conjugate gradient method to electromagnetics signal analysis, but stop going on in harmful downloads.

Rather than enjoying a good ebook past a cup of coffee in the afternoon, otherwise they juggled when some harmful virus inside their computer. application of conjugate gradient method to electromagnetics signal analysis is open in our digital library an online right of entry to it is set as public suitably you can download it instantly. Our digital library saves in merged countries, allowing you to acquire the most less latency period to download any of our books as soon as this one. Merely said, the application of conjugate gradient method to electromagnetics signal analysis is universally compatible later any
devices to read.